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INTRODUCTION 

To establish the accuracy of numerical solutions to the convective-diffusive transport 
equation 

where 

c(x,  t )  is the concentration of the migrating species [M/L3] 
D is the diffusion coefficient [L2/T] 
V is the fluid velocity [L/T] 
x is the spatial coordinate [L] 
t is time, PI. 

One normally seeks a comparison with an analytical solution. Difficulties arise, however, 
where the initial condition c(x,  0) = 0, 0 < x 5 1, normally imposed upon the analytical 
solution, is incompatible with the initial condition expressed by the numerical approximation. 
For example, the finite element method employing linear 'chapeau' basis functions, of 
necessity generates a ramp function initial condition at the upstream boundary of a 
one-dimensional domain. The objective of this paper is to provide an analytical solution 
compatible with those initial conditions most commonly encountered in finite element and 
collocation approximations. 

The paper consists of three parts. We begin with the problem specification wherein a 
general polynomial initial condition is assumed. This section is followed by a presentation of 
~~ 
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the solution, which is derived in detail in an appendix. Finally the solution is presented 
graphically and the significance of the specific form of the initial condition is discussed. 

PROBLEM FORMULATION 

Equation (1) requires an initial condition and two boundary conditions for proper specifica- 
tion. The initial condition can be written in general as 

a,+u1x'+a,x2+. . .+a,xp, O S X l l ,  

l , < X S l  
c(x, 0) = g(x) = I0 ,  

The case of u,#O, a,# 0, a 2 , .  . . , a, = 0  corresponds to a linear initial condition such as 
illustrated in Figure 1. Higher degree polynomial initial conditions are illustrated in Figures 
presented later. 

The boundary condition at x = 0 is given as 

c(0, t )  = c1 (3)  

Because the boundary condition at x = 1 is somewhat controversial, we consider both the 
Dirichlet case c(1, t )  = c2 
and the Neumann case 

d C  

dX 
- (1, t )  = 0 

We assume in the derivation that c1 1 c2 and that g(x) I c,(x) where c,(x) is the steady state 
solution. 

1 uo 
0ISTRNCE.X 

Figure 1. Solutions generated by a step initial condition (----), a ramp initial condition (-) with I ,  = 0.05. 
The ramp initial condition is shown by (+ + +); the steady-state solution (M). 
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SOLUTION 

Let O(x, t) be a normalized form of c(x, t ) ,  as shown below: 

+(x, t )  for Dirichlet condition c(l, t) = c2 
ac 
ax 

$(x, t )  for Neumann condition - ( 1 ,  t) = 0 

Employing a methodology detailed in Appendix I, a combined form of the general solution 
may be written as 

e(x, t )  = g(x> + ePXI2 C o [ ~ ,  -BE] sin (tnX)e-[*:+(P/2)zlT (7) 
n = l  where 

P = Peclet number = W/D 
T = Non-dimensional time = Dt/12 
X = Non-dimensional distance = xl l  

oBn = Fourier coefficients for polynomial initial condition 
OB: = Fourier coefficients for '0' initial condition 

6, = nrr for Dirichlet and Z,, for Neumann b.c., respectively 
Z, = non-zero roots of z,, cot (z,,) + ~ / 2  = o 

=the  solution to the steady state part of (1) under the given non-homogeneous 
boundary conditions (3), (4), or (5) .  

Table I completes the description of the solution. Note that the following definitions pertain 
to Table I. 

and 

P =  J[(3+7] 
01 =cos-' (-5) 

Table I 

Boundary Fourier coefficients 
condition Solution SteadyLstate 
at x= 1 e(x, t )  Part 6(x) 0 Bn Bt: 

Neumann 

c,/c, - ep 1 - C,/C, 
?A=- and B =- 

1-eP 1-eP 
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Special case 1 

For the more common case of c1 = 1 and c2 = 0, the expression for w(B$-B:*) simplifies 
to 

Special case 2 

If further g(x)=O, we get the solution for ‘0’ initial condition for which 

A different form of the solution in an unintegrated form for an arbitrary initial condition was 
derived by Carslaw and Jaeger.’ Two FORTRAN codes for the Dirichlet and Neuman 
boundary conditions have been developed.* 

DISCUSSION 

Let us now consider the practical significance of using an analytical solution that employs an 
initial condition totally compatible with a numerical approximation under investigation. 
Figure 1 illustrates the difference between the commonly used step function initial condition 
and the ramp function initial condition that is consistent with a finite element approximation 
using linear chapeau basis functions and a grid spacing of 0.05, x E [0,1]. It is observed that 
the front delineated by the solid line and representing the correct analytical solution is 
always ahead of the front determined by the step function initial condition. The importance 
of this observation is highlighted in Figure 2 where a larger spatial increment of 0.20, 
x E [0,1] is employed. In this instance the deviation between the two solutions is even more 
pronounced. 

In Figure 3 we present a comparison between solutions obtained with a cubic initial 
condition, such as encountered using Hermite polynomial basis functions, and the step- 
function initial condition presented in the preceding discussion. Here, as in the previous 
ramp-function case, the correct analytical solution precedes that obtained using the step 
initial condition. 

As a final example, consider a quintic polynomial that is compatible with a collocation or 
finite element approximation defined on a net with spacing 0.20, x E [ O ,  11. This solution is 
compared with the standard step-function initial condition in Figure 4. In this case one 
observes not only a difference in the locations of the fronts obtained using the different 
initial conditions, but also a difference in their shape. The ‘hump’, clearly evident in the 
quintic initial condition, is apparent only in the compatible analytical solution. 

The differences between the solutions generated using the step-functions and polynomial 
initial conditions are important when the accuracies of various numerical approximations of 
the convective-diffusive transport equation (1) are being evaluated. Error norms usually 
require an exact solution for their determination. Thus, where numerical schemes of high 
order accuracy are being examined, an analytical solution compatible with the numerical 
auxiliary conditions can be very important. 

* The listing of the computer codes may be obtained from the authors upon request 
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Figure 2. Solutions generated by a step initial condition (---) and a ramp initial condition with 1, = 0.2.  The initial 
condition is shown by (+++++); the steady-state solution by (M), P = 50. 

D N 

Figure 3. Solutions generated by a step initial condition (----), and a cubic Hermitian initial condition (-) 
with I ,  = 0.05. The initial condition is shown by (+ + +); the steady-state solution by (-), P = 50. 
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Figure 4. Solutions generated by a step initial condition (- - - -), a quintic Hermitian initial condition (-), for 
1,  = 0.03. The initial condition is shown by (+ + + + +); the steady-state solution by O w ) ,  P = 50. 
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APPENDIX I: DETAILS OF DERIVATION 

Case I Dirichlet boundary condition at x = 1, i.e. c(l ,  t )  = c2 

The steady-state part $(x) of the solution may be obtained as 

- 
The transient part of the solution under homogeneo_us boundary conditions &(O, t )  = 0 and 
&(l,  t )  = 0 and an initial condition &(x, 0) = &(x, 0) - &(x), may be obtained by separation of 
variables as 

E: may be evaluated by satisfying the initial condition 
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whe.re 

or 
[G(x) - &x>le-Px'2 = C E: sin (n.srx) 

n = l  

Multiplying both sides of (14) by sin (rn.srX) and integrating over 0 to 1 

where 

and 

Em,= w(B:-B;*) 

I 

B: = G(x)e-Px/2 sin (rnwX) dx I, 
sin (rn.srX) dx 

@* =2/1 

The definite integral on the right hand size of (15) may be evaluated using the following 
result2 ,, 

(J( a:+ b2)) 1 (-l)rq!xq-r 
sin (bx) dx = em C 

r = O  [Ja2+ b*)'+'(q - r ) !  
(19) 

Carrying out the integration in (16) and (17) using (19), the Fourier coefficients in Table I 
may be obtained. 

Case II: Neuman boundary condition at x = I; i.e. aclax(1, t) = 0 

The approach here is similar to Case I. The steady-state part $(x) may be shown to be 

The transient part is 
$<x) = 1 

The rest of the derivation is analogous to that of case I. 

APPENDIX 11: TESTED DOMAIN OF THE COMPUTER CODES 

The developed FORTRAN codes were tested for a range of values of the governing 
parameters. For T >  5 x fifty-term convergence was achieved in a series of numerical 
experiments carried out to test the codes. The initial conditions assumed in these experi- 
ments were polynomials of order ranging from 0 to 5. The range of Peclet number 
considered was between 5 and 100. For T<5 x oscillatory results were obtained. 
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